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A number of mechanisms which transport dissolved constituents and maintain 
the salt balance in estuaries are described. Although some of these have already 
been analysed, two which appear to be the most important in many real estuaries 
have received little previous attention. The Mersey Estuary is used as an example 
in which to estimate the amount of mass transported by each mechanism. The 
computations show in part how little is known and how much hypothesis is still 
required in spit?e of the number of previous estuarine studies; one may conclude, 
however, that in many real estuaries the most important mass transport 
mechanism is the net (non-tidal) transverse circulation, which is induced in part 
by the boundary geometry and in part by the longitudinal density gradient. 

1. Introduction 
Most large estuaries serve as receptacles for human and industrial waste, their 

transport capacity providing a convenient method of disposal to the ocean. 
Whatever one’s ecological or aesthetic point of view, economics dictates that for 
the foreseeable future some wastes are bound to enter estuaries; the engineer’s 
problem is to determine the capacity of the estuary to transport waste and the 
concentration of constituents which will result from a given level of discharge. 

In  this paper we are concerned with mass transport in partially mixed and 
vertically homogeneous estuaries of the coastal plain type, as defined by Pritchard 
(1967). Included are many of the world’s most important estuaries, such as the 
Thames in England and the Delaware in the United States. In  the past two 
decades coastal plain estuaries have received a great deal of study, as described, 
for instance, in a comprehensive review by Bowden (1967). Nevertheless, no 
analytical method has been found for predicting even the order of magnitude of 
the bulk mass transport coefficient. Indeed it has been argued that the complex- 
ities of estuarine flow defy analysis and that the only useful approach is empirical 
and observation.al. From an engineering point of view, however, one must know 
how to forecast the effects of such engineering works as dredging and diking, and 
to do this one must have some analytical understanding of what causes mass 
transport. 
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The basic principles of dispersion in shear flow were fh t  pointed out by Taylor 
(1954) in a study of dispersion in pipes. Taylor’s analysis was applied to steady 
open channel flow by Elder (1959),  who found that D = 5*93du*, where D is the 
coefficient in a one-dimensional mass transport equation, d is the depth of flow 
and u* is the shear velocity. Elder’s analysis depends on the effect of the vertical 
velocity profile and assumes constant flow conditions across the channel. His 
result does not describe natural channels, for whichFischer ( 1 9 6 7 , 1 9 6 8 ~ )  showed 
that the transverse velocity profile produces much larger coefficients than those 
given by Elder’s result. Fischer’s method has given reasonable predictions of 
dispersion coefficients in a number of small streams (Fischer 1968b) and in the 
Missouri River in areach where the width is about 200 m and the dispersion coeffi- 
cient about 1000 times that predicted by Elder’s result (Yotsukura, Fischer & 
Sayre 1970). 

Modifications of Elder’s result have been used in estuaries by, among others, 
Bowden (1963) and Harleman (1966). The predicted dispersion coefficients have 
been, perhaps not surprisingly in view of the natural stream results, consistently 
lower than coefficients observed in nature. Both investigators claimed that the 
larger coefficients observed in real estuaries are caused by a net steady vertical 
circulation induced by the longitudinal salinity gradient and sometimes known 
as the ‘gravitational circulation’. Little thought seems to have been given to the 
possible existence of transverse circulations; indeed most laboratory and 
analytical studies have been limited to flows of constant depth and effectively 
infinite width, specifically excluding the possibility of transverse variations. 

In  this paper we begin by showing how the effect of net vertical circulations 
can be predicted from previous experimental and analytical studies. We use the 
Mersey Estuary, for which many data are available, as a typical example and 
show that the net vertical circulation does not induce a dispersion coefficient of 
the observed magnitude. We then investigate mechanisms which may generate 
transverse circulations, and show that in many estuaries transverse circulations 
are likely to be more important than vertical ones. 

2. Modes of mass transport in estuaries 
Much of the present work in estuaries has been based on averaging of currents 

and concentration distributions over the tidal cycle. The results of these analyses 
are, of course, incomplete because they fail to include mass transport effects 
caused by the instantaneous tidal motion. Analyses, to be discussed in detail 
later, have also considered in isolation the effects of the unsteady component of 
the velocity profile. To show the relationship between the previous analyses we 
begin with a rigorous decomposition of the total mass transport in an estuary 
into the parts caused by the tidal cycle averaged motions and the parts caused 
by the fluctuations from them. 

2 .  I .  Decomposition of the velocity and concentration projles 

The instantaneous cross-sectional velocity profile may be divided into a number 
of components, as was done, for instance, by Bowden (1965) and Hansen (1965). 
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FIGURE 1. Decomposition of a two-dimensional velocity profile into 
three components. 

Both these decompositions are included in the more general scheme to be given 
here. Consider first the two-dimensional profile shown in figure 1. The velocity 
observed at a given point can be written as the average over the cross-section at 
the time of observation plus the deviation therefrom. The average over the cross- 
section can be further divided into a tidal cycle average plus a temporal deviation. 
Using an overbar to denote a cross-sectional average and angle brackets to denote 
an average over the tidal cycle, we can write 

u = ug+zc1+u2 ,  (1) 

in which uo and u1 are defined by uo = ( T i )  and u1 = G-uo;  by virtue of these 
definitions (ul) = 0 and ;ii2 = 0. Note that a fourth term representing the fluctua- 
tion in u due to short-term turbulent fluctuations could have been added to (1). 
Longitudinal turbulent fluctuations have been neglected throughout this paper, 
however, because their effect in producing longitudinal mass transport is known 
to be small compared to other mechanisms. 

As shown in figure 2, the cross-sectional deviation u2 can be further divided 
into its tidal cycle average us and a temporal deviation u’. Thus we can write 

(2) u2 = us -k u’, 

in which us = (u2) = (u) - uo, and by virtue of this definition ;iis = 0, 7 = 0, and 
(u‘) = 0. The quantity us+uo is what is often referred to in estuaries as the 
‘gravitational circulation ’, i.e. the net steady circulation of water landward along 
the bottom of the channel and seaward near the surface. The velocity profiles 
shown in figure I and 2 are typical of profiles observed on a flooding tide in a 
partially stratiiied estuary, where the seaward direction is to the left. 

Figures 1 and 2 are drawn in two dimensions for clarity, and the mean values 
over the vertical of u2, us and u‘ are shown equal to zero as would be necessary in 
a purely two-dimensional flow. To discuss real estuaries it is necessary to consider 
the three-dimensional profile shown in figure 3 and to further subdivide both 
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1CiGrrnE 2. Decomposition of u2 into a steady and a fluctuating component. 

Transverse velocity 
profile 

'-Vertical velocity 
profile 

FIGURE 3. Decomposition of us into transverse and vertical profiles. 

us and zc' into averages taken over a given vertical and variations therefrom. 

u s  = Ust  + u,, Thus we can write 

The subscripts t andv stand for variations in the transverse andvertical directions 
respectively. ust and u; are transverse velocity profiles, defined as the means of 
us and u' respectively over the depth at a given transverse location; us, and uh are 
vertical variations from the local vertical mean. Note that in a three-dimensional 
flow the average of us or u' over any particular vertical need not be zero, but the 
means of uz, us and u' over the entire cross-section must still be zero because of 
the way the terms are defined. 

Combining the above equations we have as a genera1 decomposition of the 
point velocity 

(3) 

(4) u.' = u' t+U;. 

4 x ,  y, 2, t )  = uo(4 + %(X7 t )  + % t ( X ,  2) +  US"(^, Y, 2) + u.;(x, 2, t )  + 4@, y, 2, t ) .  (5) 
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t 
C 

FIGURE 4. Decomposition of a two-dimensional concentration profile 
into four components. 

In  this equation x is the co-ordinate positive landward along the axis of the 
estuary, y is the vertical co-ordinate positive downward, x is the transverse 
co-ordinate and t is time. The orientation of y and x are in the sense most common 
in hydraulic engineering, which unfortunately is the reverse of what is common 
in oceanography. 

The concentration profile may be written in a similar way as 

C ( X ,  Y, 2, t )  = Co(4 + Cl(X, t )  + CZ(X, Y, x ,  t ) ,  

CZ(% Y, 2, t )  = c,tc., 2) + CS”(X, Y, 4 + CXX, 2, t )  + c;(x, Y, 2, t )  

(6) 

(7) 
in which 

and, as before, Co = (c), C, = c - Go and cz = 0. 
Figure 4 shows a typical concentration profile in a purely two-dimensional 

flow; the transverse and vertical profiles for a three-dimensional flow, C,, etc., 
are defined in exactly the same way as the analogous quantities ust, etc. It should 
be noted, however, that the relative magnitudes of the terms in the concentration 
and velocity profiles are usually not the same. u1 is usually much larger than uo, 
whereas C, depends on the length of the tidal excursion and the longitudinal con- 
centration gradient. If C refers to salinity in a partially stratified estuary, as illu- 
strated in figure 4, C, is often much smaller than Co. Similarly u‘ is usually much 
larger than us, but C‘ is often much smaller than C,. 

2.2. Decomposition of the mass transport 

The tidal cycle average of the mass transport along the axis of an estuary is 
given by 

in which T is the tidal period and A is the cross-sectional area. Hansen (1965) 
wrote A as the sum of a tidal cycle average A ,  and the temporal deviation from 
this, A,, and obtained 

3 = A0 uo co, + CO(4 Ul) + AO(U.1 C,) + Uo(A1 C,) + ( A  l(U.1 Cl)’) + (A% C,), (9) 
43-2 
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in which (u,Cl)' is the deviation of ulCl from its tidal cycle mean. The first two 
terms may be combined to give CoQf, where Qf is the discharge of water into the 
estuary upstream of the cross-section.? The fourth and fifth terms are usually 
small, as demonstrated by Hansen for the Columbia Estuary. For the remainder 
of this paper we shall assume that A,/Ao is small. Now, considering the balance 
of salt in an estuary in which the salinity distribution is in equilibrium the salt 
balance equation is simply A?! = 0 and (9) becomes 

- 
0 = COQf +Ao((u,C,)+(u2C2)). (10) 

We now assume, with justification to be given later, that a dispersion coefficient 
representing mass transport by the correlation of velocity and concentration 
gradients can be defined by 

i.e. D is defined as a Fickian coefficient for diffusion of the time- and space- 
averaged concentration down its gradient. This is, of course, equivalent t o  
asserting that Go follows a one-dimensional diffusion equation of the form 
aCo/at -I- U,aCo/ax = D a2Co/ax2, if the term containing (ulCl) is neglected. 

Using the decompositions of u2 and C2 and noting that because of the way the 
terms have been defined all cross-products of transverse and vertical variations 
are zero, as are all cross-products of steady terms with time-varying terms, 
(1 1) becomes 

- 
(UZC2) = D(dCO/dX), (11) 

= D,+D2+D,+D,, (12) 

where Dl,. . ., D, are defined for reference in subsequent sections. 
The four terms D,, . . . , D, represent respectively mass transport by the trans- 

verse net circulation, the vertical net circulation, the transverse oscillatory shear 
and the vertical oscillatory shear. Of these terms the components of the second 
were analysed by Hansen & Rattray (1965) and the third and fourth by Holley, 
Harleman & Fischer (1970). These analyses will be discussed in more detail in 
3 5 4, 5 and 6, and orders of magnitude will be estimated for each term for a real 
estuary. In  4 6 we shall also analyse the first term, which has not been treated 
before. 

3. Description of a prototype estuary 
In  the following sections we shall want to compute the magnitudes of each term 

in (12) for a real estuary. One can hardly speak of a typical estuary because 

t Pritchard (1958) points out that Qf = A,u,+(A,u,) and notes correctly that the 
second term is often much larger than the first (and of opposite sign); hence ZL, is corre- 
spondingly larger than the fresh-water discharge velocity Uf = Q,/A,. The average velocity 
of a fluid particle is U,, because the average water particle must move a distance Qf T / A ,  
down the estuary during a tidal cycle to make room for the new water coming in. The 
larger velocity u, is one that could be measured a t  a fixed cross-section, but it is not relevant 
to a study of mass transport and its designation as the non-tidal drift by Pritchard and 
others seems a misleading choice of terms. 
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Maximum depth (d) 
Width ( b )  
Fresh-water discharge (Qf) 
Cross-sectional area ( A )  
Fresh-water discharge velocity (U,) 
Mean tidal range 
Longitudinal salinity gradient 
R.m.s. tidal velocity ( U )  
Shear velocity (u*) 
Vertical mixing coefficient for mass ( E , )  

Vertical mixing coefficient for momentum (E,) 
Length of approximately uniform channel 
Vertical salinity variation (SS/S) 
Observed longitudinal dispersion coefficient (D) ,  

two vahes 

19-5 m 
1300 m 
80 m3/s 
I9000 m2 
0.0042 m/s 
6 m  
2.7 x 10-4 %,/m 
0.8 m/s 
0.04 m/s 
0.002 m2/s 
0.004 m2/s 
9km 
0-042 
161 and 360 m2/s 

TABLE I. Values of the parameters used in the computations 

geometry and degree of stratification vary so widely, but the Mersey Estuary in 
England is typical of many and will serve as a useful example. Bowden & Gilligan 
(1971) have given the results of density and velocity measurements in the 
Egremont section of the Mersey on 13 occasions, and these data are supplemented 
by the results of a model and prototype study by Price & Kendrick (1963) and 
previous reports by Bowden (1965, 1967). Table 1 gives the values of various 
parameters which will be used in subsequent computations. In  this table the 
value of the fresh-water discharge is the median given by Bowden & Gilligan 
(1971); the longitudinal salinity gradient is a median of the measured values as 
given by Bowden in personal communication; the r.m.s. tidal velocity and the 
value of SX/S are medians of the values given in table 3 of Bowden & Gilligan 
(1971); the vertical mixing coefficient for mass is the mean of five values given 
by Bowden (1965); the ratio between vertical mixing coefficients for mass and 
momentum was suggested by Bowden in a personal communication as being 
a representative value for all measurements. The value of the shear velocity has 
been estimated by the author to be & of the r.m.s. tidal velocity, on the basis of 
the friction coeflicient used by Bowden. The two observed values of the longitu- 
dinal dispersion coefficient are given by Bowden (1 967). 

4. The vertical! oscillatory shear 
4.1. Taylor’s analysis of dispersion in shear $ow 

Taylor’s (1954) result for dispersion in a steady uniform shear flow may be written 
for a generalized cross-section as 

D = kU212/€, (13) 

in which 1 is a chitracteristic length of the cross-section, E is a coefficient for mixing 
across the section and k is a proportionality constant obtained by integration of 
the velocity and concentration profiles across the channel. u is the velocity 
relative to the cross-sectional mean, which for steady flow is us as defined in 5 2. 
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Taylor's analysis for pipe flow gives k = 0.054, while Elder's analysis for open 
channel flow gives k = 0.067. Fischer (1969) tested the sensitivity of k to cross- 
sectional shape; for a triangular shape typical of rivers he found k = 0.065, while 
for a typical estuary section with one deep portion and the rest shallow he found 
k = 0.16. Apparently the order of magnitude of k is insensitive to cross-sectional 
shape or velocity distribution. 

The analysis leading to (13 )  provides the basis for most of the estimates to be 
given in this paper. It should be remembered that the analysis is based on an 
asymptotic equilibrium between cross-sectional mixing and longitudinal advec- 
tion which may not be reached in estuaries. Estuarine channels are generally not 
uniform and the time required for cross-sectional mixing is often too long to allow 
local formation of the equilibrium. Nevertheless, (13) has yielded accurate results 
in rivers which are locally non-uniform; its use seems reasonable so long as time 
is available for formation of an overall approximate equilibrium which, as given 
by Saffman (1960)) requires only that L/U, $ b2/8ez, where L is the length of the 
channel, U, = QflA and ez is the transverse mixing coefficient. For the Mersey 
8eB L/Uf b2 5, using a value of ez to be justified in 3 6. Hence it seems reasonable 
to expect that (13 )  will give results of the correct order of magnitude. 

4.2. Application of Taylor's analysis to the instantaneous tidal motion 

It was pointed out in the introduction that when Taylor's analysis is applied to 
a homogeneous two-dimensional shear flow with a logarithmic velocity distribu- 
tion the result is that D = 5.93 du*. Bowden (1965) tried to model the instanta- 
neous tidal motion by assuming that the flow profile is logarithmic but oscillatory 
in time; he found analytically that in oscillatory flow the dispersion coefficient 
should be one half of that in the equivalent steady flow at the amplitude of the 
oscillation. For the Mersey this would give a dispersion coefficient of approxi- 
mately 5 m2/s, a much lower value than those observed. Bowden suggested that 
the explanation lay in the observed value ofe,, which is reduced by the stratifica- 
tion to about & of the value one would expect in a homogeneous flow. Hence 
by ( 1 3 )  the dispersion coefficient should be increased by a factor of 30, yielding 
a coefficient in the observed range. 

Bowden's analysis, however, failed to allow for the possibility of a phase shift 
between the velocity and concentration profiles. Holley et al. (1970) showed that 
the average of dispersion caused by an oscillating flow is less than that for an 
equivalent steady flow by a factor depending on the ratio T' = T / q ,  where T is 
the period of oscillation and T, = 12/s is the time scale for cross-sectional mixing. 
For T' greater than unity the reduction is nil, but for T' less than 0.2 the results 
of Holley et ab. may be approximated by 

D/Do = 3T", (14) 

where Do is the dispersion coefficient for the equivalent steady flow. For very 
small T' the concentration and velocity profiles have a phase shift approaching 
go", so the covariance averaged over the tidal cycle gives zero dispersion. In  
estuaries with no vertical density gradient a typical value of T,  for vertical mixing 
is on the orderIof 20 min, so T' is very large. In partially stratified estuaries, on 
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the other hand, vertical mixing is hindered; T‘ is often much less than unity and 
the result of the analysis of Holley et al. must be used to estimate the effect on 
longitudinal dispersion. 

For the Mersey, using the value for cu measured by Bowden of 0.002 m2/s, the 
value of T’ for vertical mixing is approximately 0.24. Hence Taylor’s analysis, as 
applied only to the instantaneous vertical velocity profile and modified to account 
for the smaller vertical mixing coefficient and the effect of oscillation, gives a value 
for D, as defined in (12) of approximately 23 m2/s. This is the result of only the 
vertical profile of the instantaneous tidal motion. 

5. The net vertical circulation 
A longitudinal density gradient will drive a net vertical circulation because of 

the longitudinal gradient of hydrostatic pressure. Most investigators have 
claimed that this circulation is the primary mechanism for maintenance of the 
salt balance in partially stratified estuaries. Widely quoted evidence for the 
importance of the vertical circulation is given by Pritchard (1954) for the James 
River, Virginia. Pritchard contrasted the cross-sectional variation of two terms 
which in our notation are (uO+us) (Co+C,) and (u’C’), and concluded that 
because the first of these varies much more over the cross-section than the second 
it must represent the more important mechanism for mass transport. The con- 
trast may be misleading, however, because the first term includes at  each depth 
the value of ztSt7,, which is locally much bigger than (u’c’) but whose average 
over the cross-section is zero. If one subtracts from each of Pritchard’s tabulated 
results the value of usCo his conclusion is less apparent. In  this section we shall 
conclude, in contrast to Pritchard‘s result, that in many estuaries the net vertical 
circulation is not a sufficient mechanism to maintain the salt balance. 

5.1. Analytical studies 

Analytical studies of the vertical circulation have been given by Hansen & 
Rattray (1965, 1966) and Prych (1970). Hansen & Rattray found a similarity 
solution for the -vertical net velocity and salinity profiles based on two dimension- 
less parameters which were empirically related to bulk parameters of the estuary. 
Prych obtained the same velocity profile and from it used an analysis similar to 
Elder’s to obtain 

D, = 10-2(d2/g)  (1.34K2+ 3*02KUf+ 1*90U,), (15) 

where K = &d3N2/E, is the order of magnitude of the induced velocity, E, is the 
vertical mixing coefficient for momentum and N 2  = - (g/p)  dp/dx. For the Mersey 
Narrows N2 is approximately 1.9 x 10-6s-2, giving a value of K of 0.11 m/s. 
Bowden & Gilligan (1971) report net surface velocities in the Mersey of between 
0.1 and 0.2 m/s, in reasonable agreement with the analysis. A surface velocity of 
approximately 0.1 m/s can also be obtained from Hansen & Rattray’s (1966) 
semi-empirical plot of surface to mean velocity vs. a Froude number, Using 
K = 0.1 1 mls yields a dispersion coefficient D, = 32 m2/s as the result of the 
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tidal-cycle-averaged velocity profile. The total result of vertical variations of 
velocity is the sum of this result and the one already obtained for the effect of the 
instantaneous velocity profile, or approximately D = 55 m2/s. 

5.2. Dimensional analysis 

Prych’s solution is not explicit in the sense that the values of N2,  E ,  and e, depend 
on the state of stratification and therefore on D. An alternative approach is to 
carry out experiments and correlate the results against the proper dimensionless 
numbers. If we consider an infinitely wide channel of constant depth the dis- 
persion coefficient can be assumed to depend only on d ,  u*, U ,  Qf/b and gAp/p, 
where U is the r.m.s. tidal velocity, Qf/b is the discharge of fresh water per unit 
width and A p  is the density difference between fresh and ocean water. 

Ellison & Turner (1960), in a study of mixing across an interface in an inclined 
channel, showed that the physically important parameters are the velocity and 
the input of buoyancy per unit width. For estuaries the buoyancy input per unit 
width is (Aplp)  gQ#, and the equivalent of what Ellison & Turner called the pipe 
Richardson number is what we shall call the estuarine Richardson number, 
RiE = gApQf/pbU3. For a second dimensionless number it is convenient to choose 
a Froude number based on the fresh-water discharge velocity like that used by 
Hansen & Rattray, P = Q,/bd(gdAp/p)*. We can now write 

D/&* = f (RiE,F,  u/u*). (16) 

It may be of interest to digress for a moment and notice the physical meaning 
of Ri, and F.  Hansen & Rattray (1966) give a plot of SS/S vs. usurf/q, where 6s 
is the salinity difference between surface and bottom and usurf is the net surface 
velocity, in terms of P and a mixing parameter P = Q,/bdU. The plot is semi- 
empirical, being derived from a combination of their analysis with admittedly 
sketchy data from six real estuaries. They show that usUrf/Uf depends solely on F 
but that SS/S depends on both P and P. I f  their result is replotted in terms of 
Ri, and F ,  as in figure 5, 8x1s is found to depend primarily on Ri, and only 
slightly on P. Figure 5 also includes some laboratory and field results not con- 
sidered by Hansen & Rattray, all of which substantiate the previous empirical 
correlation. It appears that the degree of stratification in an estuary depends 
primarily on Ri,, while the magnitude of the vertical circulation depends 
primarily on F .  

5.3. Experimental results 
Ippen & Harleman (1961) have described the results of a careful study of mass 
transport in oscillating flow in a rectangular laboratory channel 327 f t  long and 
0.75 ft wide at the Waterways Experiment Station in Vicksburg, Missisfippi. 
The experiments have been summarized by Ippen (1966) and re-analysed by 
Harleman & Ippen (1967), and will be referred to henceforth as the WES studies 
(including all these reports). Because of the geometry of the channel transverse 
variations appear to have been unimportant (as was intended) ; hence the experi- 
ments can be used to determine the isolated effect of vertical currents. During 
the course of the experiments the fresh-water discharge, ocean density and tidal 
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FIUURE 5. Relativo stratification vs. estuarine Richardson number and Hansen & Rattray's 
Froude number. Lines of constant Froude number are as given by Hansen & Rattray 
(1966). 9, SSlS vs. R ~ E  as given by observed data; b ,  value of 881s corresponding to 
observed values of RiE and P according to the results of Hansen & Rattray. Numbers above 
points are run numbers of the WES experiments. Other points are identified as follows: 
G I ,  Gironde Estuary at point PK89  on 13 May 1969; cf2, Gironde Estuary at point P K 7 8  
on 17 December 11968, both values from data given by Bonnefille (1970); Tk, Thames 
Estuary, from data given by Inglis & Allen (1957); M ,  Mersey Estuary; V ,  Vellar Estuary 
from data given b y  Dyer & Ramamoorthy (1969). 

velocities were varied independently to yield a reasonable range of Richardson 
and Froude numbers; the depth, however, was held constant at 0.5ft and one 
may assume that the friction factor was approximately constant. Thus the 
experiments can be used to determine the dependence of D/du* on RiE and F ,  

The WES results are replotted in figure 6. In  this figure Do is the dispersion 
coefficient in a constant-density estuary, obtained by putting dye but no salt 
in the ocean, and D is the coefficient observed for corresponding tidal conditions 
and a saline ocean. Thus Do results from the oscillatory shear terms only, whereas 
D includes the net vertical circulation and also reflects the reduction in vertical 
mixing due to sixatification. The investigators reported that Do had the value 
2.SG*, where G is the rate of energy dissipation per unit mass and the units are 
feet and seconds; the factor 2-8 was the same for three experiments with different 
tidal ranges and velocities. The result can be made properly dimensionless and 
compared with the analytical results of Taylor and Elder by introducing the 

but not on U/u*. @ 
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FIGURE 6. Increase in the longitudinal dispersion coefficient due to the net vertical circula- 
tion, as given by the WES studies. Numbers above left of points are run numbers ; numbers 
below right are values of P. 

depth, which was held constant, and using the relationship, which is exact for 
steady uniform flow, that G*& = 1.4f +du*, wherefis the Darcy-Weisbachfric- 
tion factor. By using an assumed value off = 0.05 the experimental result is found 
to be equivalent to Do z 16du*. The result is somewhat higher than would be 
predicted from Elder’s theory (5*93du*), but is approximately equal t o  the median 
of 197 measurements by Fischer (1967) of dispersion coefficients in steady flows 
in rectangular channels. Thus in the absence of density effects the WES experi- 
ments yielded dispersion coefficients which were similar to those which have been 
measured in similar steady flows, and which were of the magnitude predicted by 
application of Taylor’s theory, considering only the vertical velocity profile. 

When a salinity gradient has been introduced figure 6 shows that, within reason- 
able limits, the increase in D due to density effects depends solely on Ri,. Values 
of P are shown beside each point, but no systematic effect can be seen. 

The results shownin figure 6 might have been anticipated by Ellison & Turner’s 
argument, which suggests that D depends only on Qf gAp/pb and not on Qf/b  and 
gAp/p separately. If that were true F would have to be deleted from (16) and 
dimensional analysis would assert that the increase of DIdu* due to gravitational 
effects does not depend on d. Such appears to be the case, but considering that 
(15) contains the eighth power of depth one must admit that the result is remark- 
able. We can only wish in retrospect that during the WES experiments the depth 
had occasionally been varied so that the depth dependence could be seen indepen- 
dently of the other parameters. 

Returning to the Mersey Estuary, the computed value of Ri, is 3.0 x 10-2 and 
figure 6 gives a value of D/Do of 2.2, giving D = 29m2/s. This is in reasonable 
agreement with the separate results for the vertical oscillatory shear and the 
vertical net circulation, although less than their sum. All three values of D are 
substantially below the observed range. 
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5.4. CorreEation with previous analyses 
The WES studies were previously correlated with different dimensionless numbers 
and it may be of interest to show why Ri, is an equivalent but better parameter to 
describe the same results. The earlier studies used a ‘stratification parameter ’ 
G/J ,  where J := ApgdUf lpL and L is the length of the tank. The stratification 
parameter can be expressed in terms of the Richardson number by noting that 
for steady unilform flow C = gU8, where S is the channel slope, which by the 
Chezy equation is proportional to U2/gd. Making these substitutions gives 

G/Jcc R i E l ( L / d ) .  (17) 

In  the experiments Lid was held constant ; had it been varied it seems clear that 
the studies would not have yielded a unique relationship between G/J and DID,. 

In  the later analysis Harleman & Ippen (1967) define an ‘estuary number’ as 
E = PT UE/gdU,T, where PT is the tidal prism and U, is the maximum flood-tide 
velocity. This number can also be expressed in terms of RiE by noting that to  
a good approximation PTcc U,bdT. Assuming a proportionality between U and 
U, gives 

E cc Ri&Aplp) .  (18) 

This explains why Harleman & Ippen were able to correlate C/J  with E only for 
those experimeints having the same value of A p / p  (see their figure 11, which gives 
a linear relation between E and G/J but only includes points for which 
A p / p  2 0.025; the remaining points, which would be off the line, are not shown). 

In  summary, the correlations obtained with G/J  and the ‘estuary number’ 
depended on certain parameters being held constant during the experiments. 
The estuarine Itichardson number appears to express correctly the dependence 
of D/Do on all the parameters, and is therefore preferable to the dimensionless 
numbers used previously. 

6. Transverse circulations 
6.1. The transverse oscillatory shear 

The effect of the transverse oscillatory shear can only be estimated because the 
transverse velocity profiles have not been measured (making a detailed measure- 
ment of a transverse profile in a real estuary is extremely difficult). To make the 
estimate we return to (13), in which 1% can be taken equal to 0.1, being a typical 
value for estuaries (Fischer 1969). The mean velocity deviation for a typical 
velocity profile is approximately 4 of the mean velocity, so a reasonable estimate 
of z 2  is 0.02 m2/s2. 1, which should be taken as the distance from the thread of 
maximum velocity to the most distant bank, we take to be 1000m. 

The least well understood parameter is the transverse mixing coefficient e2. In  
straight uniform channels of constant depth and large width-to-depth ratio 
experiments have established reasonably well (Prych 1970) that cz 2 0*15du*. 
Implicit in this formulation is that the scale of the horizontal eddies is determined 
by the depth. In estuaries larger scale eddies will be expected because of channel 



684 

7- 
I 

H .  B. Fischer 

FIGURE 7. Defhition sketch for the cross-section used in the analysis. 

bends and interaction of the tidal currents with the irregular boundary geometry, 
and experimental results are often conflicting. In South San Francisco Bay, 
Ward & Fischer (1971) computed a value of eB between 0.25 and 0.40m2/s; in the 
Mersey, with its greater depth but otherwise similar geometry, avalue of 0-50 m2/s 
seems reasonable. With this value of es and the values of E ,  z2 and k already rnen- 
tioned (13) and (14) yield a value of D, = 6.0 m2/s. The relatively small value is 
a reflexion of the reasonably large width of the cross-section and the correspond- 
ingly long time scale for transverse mixing. 

6.2. The transverse gravitational circulation 

Previous studies of the current induced by a longitudinal density gradient have 
been limited to channels of constant depth; the investigators seem to have over- 
looked the fact that in a cross-section of variable depth a net transverse circula- 
tion will also be generated. This is because the longitudinal pressure gradient 
depends on the depth; on the average the inflow will be concentrated in the deeper 
parts of the cross-section while the return flow is in the shallower parts. 

To quantify the transverse circulation consider the simple triangular cross- 
section shown in figure 7. Neglecting accelerations and transverse shear stress 

Integrating from 0 to y yields 

in which S, is the slope of the water surface, x is positive landward and aptax is 
assumed to be a function of x only. Averaging over the tidal cycle and neglecting 
variations in y during the cycle gives 

where N 2  = - (g/p) dpldx and the boundary condition is us = 0 when y = h. 
Setting 7 = g/h and integrating gives 

The variation of us with z is implicit in the presence of h, which is a function of x .  
Equation (21) was also obtained by Prych (1970), who justified the assumptions 
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used to obtain (19) more rigorously, and is also equivalent to the result given by 
Hansen & Rattray (1965). 

The mean water slope (8,) is determined by noting that the average, over the 
cross-section, of us must be equal to - U;. The result will depend somewhat on 
the assumed variation of E,; a simple reasonable assumption is that both E, and 
ey depend linearly on local depth, i.e. E, = Eoc and ey = eoc, where = h/d = z/b. 
Setting KO = &d3iV2/Eo gives 

9% 1 (SW> = -+&+KO). 
sd 

u, = -3 3u f 6+K0(4g2- 3c). 

Substituting this into (21) and averaging over the depth yields 

The first term represents a velocity profile for the net seaward velocity and the 
second term is the transverse gravitational circulation. By considering only 
the second term (i.e. assuming U, 4 K )  a dispersion coefficient can be found from 
the formulation based on Taylor’s analysis : 

(22) 

with the result that D, = 0.019K~b2/~z.  (24) 
For the Mersey this gives D, = 430m2/s, a significantly larger value than that 
computed by other mechanisms. 

6.3. Boundary-induced circulation 

A number of other mechanisms which are difficult to quantify may produce 
transverse circulations, €or instance wind stress and the Coriolis acceleration. In  
addition it is quite possible that a net transverse circulation can be induced by 
the interaction of the tidal currents with the boundary geometry. The simplest 
example would be flow through a small entrance into a circular basin; the flow 
enters as a jet and leaves as a potential sink flow, implying a net circulation 
inward along the diameter and outward along the edges. In  more realistic situa- 
tions one often notices that flood currents are stronger in one part of an estuary 
and ebb currents stronger in another. Analytical solutions are unlikely to 
describe the current distribution in real estuarine geometries completely, but 
reference can be made to numerical and physical models. For instance, Price & 
Kenhick, in their model study of the Mersey, measured net drifts per tidal cycle 
which imply a transverse velocity profile with a mean velocity deviation of about 
0.1 ftls. This coirresponds t o  a dispersion coefficient of approximately 130 mz/s, 
which represents the result of both the boundary-induced and the gravitational 
net transverse circulations in the model. 

7. Summary and conclusions 
In  this paper we have tried to isolate and determine the magnitudes of the 

mechanisms, responsible for causing the observed rates of longitudinal mass 
transport in partially stratified estuaries. The principle involved in Taylor’s 
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analysis of longitudinal dispersion in pipes has been used, with the hope that 
although the equilibrium required by that analysis may not be reached in real 
estuaries the results will be correct at  least in order of magnitude. The Mersey 
Estuary has been used as an example of the magnitude of the physical parameters 
typical of many real estuaries, with the following results. 

(i) The vertical oscillatory shear D, = 23 m2/s. 
(ii) The net vertical circulation D, = 32 m2/s. 
(iii) The effect of all vertical gradients, as shown by the WES studies, 

(iv) The transverse oscillatory shear D, = 6 m2/s. 
(v) The transverse gravitational circulation D, = 430 m2/s. 
The dispersion coefficient generated by the sum of all the mechanisms is some- 

what greater than the observed range of values of 161-360m2/s, suggesting that 
the analysis may have overestimated the effect of the transverse gravitational 
circulation. If the transverse gravitational circulation is neglected, however, the 
sum of the other mechanisms is substantially less than the observed range of 
coefficients. 

The relative magnitudes shown for the various mechanisms are for one estuary 
only and are all subject to a substantial degree of hypothesis. It seems clear, 
however, that contrary to  frequent statements in previous literature the vertical 
gravitational circulation is not necessarily the most important mechanism. We 
have shown that the ratio of the effect of the transverse to vertical gravitational 
circulations is of order b2e,/d2e,; in many real estuaries this ratio is large, and it 
appears that the dispersion coefficient caused by gravitational effects will be 
proportional to the square of the width. 

Every estuary has its individual characteristics and the complexities of 
estuarine geometry are such that no analytical theory is ever likely to describe 
mass transport in estuaries completely. Instead recourse is made to numerical 
simulation programmes, which become ever more complex with the increasing 
size and speed of electronic computers. Even here, however, a complete descrip- 
tion of the mechanics of estuarine mass transport has not yet been achieved, nor 
does it seem likely to be achieved in the near future. Indeed, numerical pro- 
grammes which have been published up to the present time have not even 
considered the transverse gravitational circulation and therefore may have 
omitted the most important part of estuarine circulation. One conclusion of this 
study is that numerical programmes which include the effect of the transverse 
gravitational circulation should be written, and that those programmes presently 
in existence which do not include the transverse circulation are unlikely to 
describe accurately mass transport in partially stratified estuaries. 

D 2 + D ,  = 29m2/s. 

This paper was written during my tenure of a NATO Post-Doctoral Fellowship 
at  the University of Cambridge. I am particularly indebted to Dr J. Stewart 
Turner for several helpful discussions. I also wish to thank Professor K. Bowden 
for making available his most recent data on the Mersey Estuary in advance of 
their publication. 
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